Crystal structure of a dimeric oxidized form of human peroxiredoxin 5.

نویسندگان

  • Christine Evrard
  • Arnaud Capron
  • Cécile Marchand
  • André Clippe
  • Ruddy Wattiez
  • Patrice Soumillion
  • Bernard Knoops
  • Jean-Paul Declercq
چکیده

Peroxiredoxin 5 is the last discovered mammalian member of an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Mammalian peroxiredoxin 5 has been recently classified as an atypical 2-Cys peroxiredoxin due to the presence of a conserved peroxidatic N-terminal cysteine (Cys47) and an unconserved resolving C-terminal cysteine residue (Cys151) forming an intramolecular disulfide intermediate in the oxidized enzyme. We have recently reported the crystal structure of human peroxiredoxin 5 in its reduced form. Here, a new crystal form of human peroxiredoxin 5 is described at 2.0 A resolution. The asymmetric unit contains three polypeptide chains. Surprisingly, beside two reduced chains, the third one is oxidized although the enzyme was crystallized under initial reducing conditions in the presence of 1 mM 1,4-dithio-dl-threitol. The oxidized polypeptide chain forms an homodimer with a symmetry-related one through intermolecular disulfide bonds between Cys47 and Cys151. The formation of these disulfide bonds is accompanied by the partial unwinding of the N-terminal parts of the alpha2 helix, which, in the reduced form, contains the peroxidatic Cys47 and the alpha6 helix, which is sequentially close to the resolving residue Cys151. In each monomer of the oxidized chain, the C-terminal part including the alpha6 helix is completely reorganized and is isolated from the rest of the protein on an extended arm. In the oxidized dimer, the arm belonging to the first monomer now appears at the surface of the second subunit and vice versa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution.

The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredo...

متن کامل

Crystal structure of the C47S mutant of human peroxiredoxin 5

In the crystal structure of the reduced form of the wild-type human peroxiredoxin 5, the presence of a benzoate ion in direct interaction with the peroxidatic cysteine (Cys 47) appeared as a rather intriguing feature since it is known that the benzoate ion can play the role of a specific hydroxyl radical scavenger. The crystal structure of the C47S mutant of the same enzyme has been crystallize...

متن کامل

The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus

Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and a...

متن کامل

THE ISOLATION OF ENZYME TRANSKETOLASE FROM HUMAN ERYTHROCYTES: THE CHARACTERIZATION OF ITS QUARTERNARY STRUCTURE

Human erythrocyte transketolase (sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate, glycolaldehyde transferase, E.C. 2.2.1.1.) has been isolated from erythrocytes with a specific activity of 59.84 U/mg. SDS-PAGE and SE-HPLC were used both as a measure of purity and as a preparative mean to obtain a higher degree of purity. Four protein bands corresponding to molecular weights of 32,0...

متن کامل

Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum

Plasmodium falciparum possesses a single mitochondrion with a functional electron transport chain. During respiration, reactive oxygen species are generated that need to be removed to protect the organelle from oxidative damage. In the absence of catalase and glutathione peroxidase, the parasites rely primarily on peroxiredoxin-linked systems for protection. We have analysed the biochemical and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 337 5  شماره 

صفحات  -

تاریخ انتشار 2004